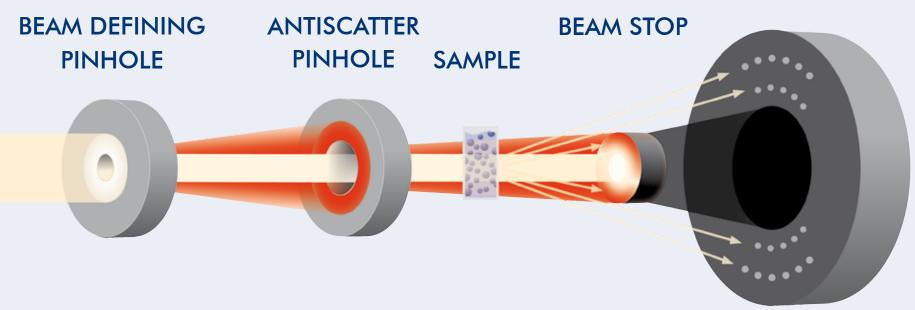
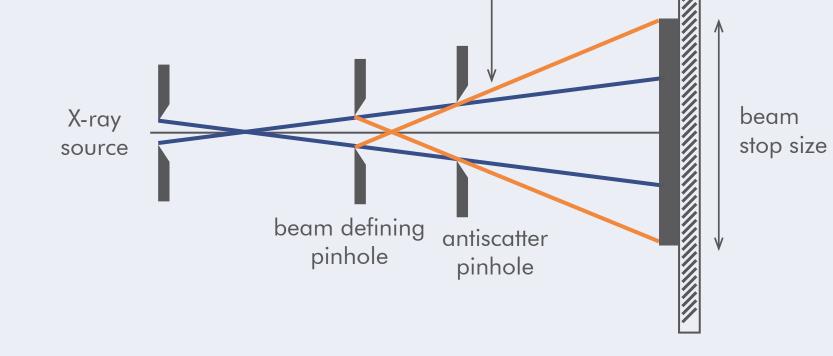
SCATEX Pinholes - Scatterless Apertures for X-ray Analytical Equipment

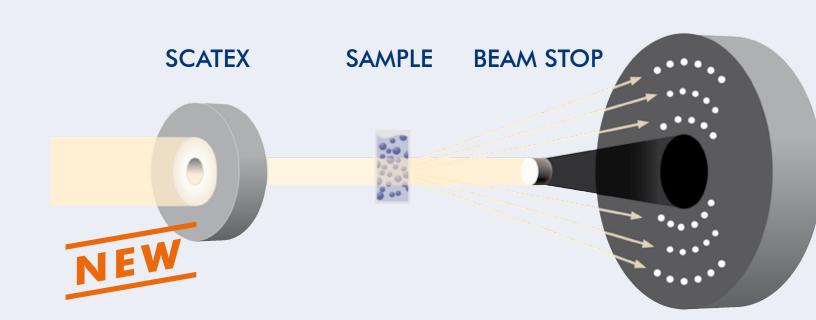

Andreas Kleine¹, Christopher Umland¹, Jürgen Graf¹, Christian Gollwitzer², Christina Krywka³, Josef Kreith⁴

¹ Incoatec GmbH, Max-Planck-Str. 2, 21502 Geesthacht, Germany; ² Physikalisch Technische Bundesanstalt, Abbestr. 2-12, 10857 Berlin, Germany; ³Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany; ⁴Materials Center Leoben, Roseggerstraße 12, 8700 Leoben, Austria


SCATEX - The New Scatterless Pinholes

Parasitic scattering caused by apertures is a well-known problem in X-ray analytics, which forces users and manufacturers to adapt their experimental setups to this unwanted phenomenon. Increased measurement times due to lower photon fluxes, a lower resolution caused by an enlarged beam stop, a larger beam defining pinhole-to-sample distance due to the integration of an antiscatter guard and generally a lower signal-to-noise ratio leads to a loss in data quality. The new SCATEX pinholes produce almost no parasitic scattering and overcome the aforementioned problems: hence, antiscatter pinholes become dispensable, system sizes shrink, resolution and photon flux increase, data quality improves.

THE PAST


strongly reduced parasitic pinhole scattering

even with an antiscatter pinhole the beam stop needs a large diameter due to the parasitic scattering. With SCATEX pinholes the antiscatter pinhole becomes dispensable and the beam stop only needs to have the size of the primary beam. This enables a higher resolution and photon flux.

A SAXS setup with a typical 3-pinhole collima-tion system. This illustration clearly shows that

parasitic scattering primary beam

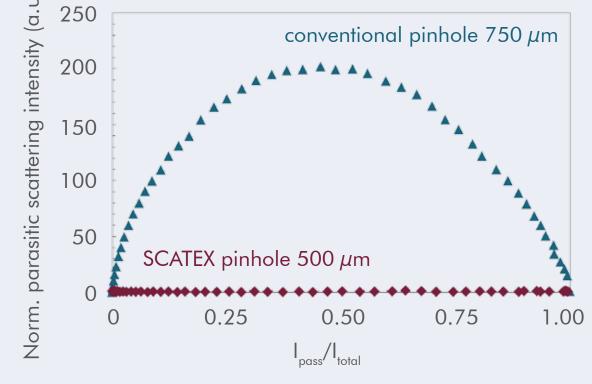
- resolution and photon flux enhancement
- easier and faster pinhole alignment
- no antiscatter pinhole needed
- diameters 30-2000 μ m
- SCATEX-Ge for lower and SCATEX-Ta for higher energies

SCATEX Pinholes for SAXS Home-Lab Systems

Typical SAXS instruments in the home-lab have a 3-pinhole collimation system where the first two pinholes define the beam size and divergence and the third aperture (antiscatter pinhole) absorbs parts of the parasitic scattering. Here, we will show the high potential of scatterless SCATEX pinholes for home-lab SAXS setups which improve the performance regarding the photon flux and resolution while simultaneously shrinking the footprint of the instrumentation.

Measuring Parasitic Aperture Scattering

Pt/Ir Pinhole

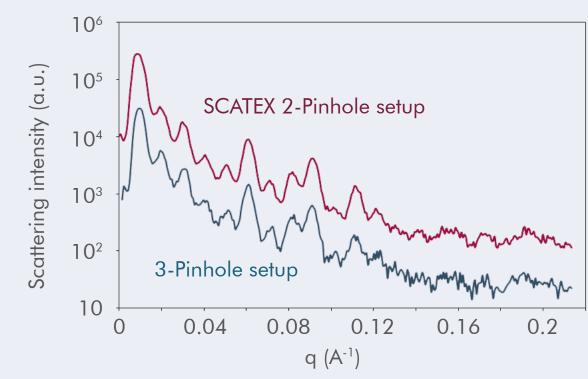

- cause a two orders of magnitude higher para- parasitic scattering sigsitic scattering signal
- aperture scattering deep into the q-space

SCATEX-Ge Pinhole basically scatter-free nal below the detection limit

 $_{\rm total}=0.5$

3.5 cps

Measurement results of a SCATEX Ge and a conventional Pt/Ir pinhole. The apertures are driven stepwise into the X-ray beam while simultaneously measuring the parasitic aperture scattering around the beam stop. The parasitic scattering intensity is corrected for the dark current of the defector and for air scattering. The signal is normalized to a standard glassy carbon intensity in order to allow a comparison.


Comparison of a 2-Pinhole and a 3-Pinhole Setup

Detector image of a SAXS experiment of a rat tail tendon.

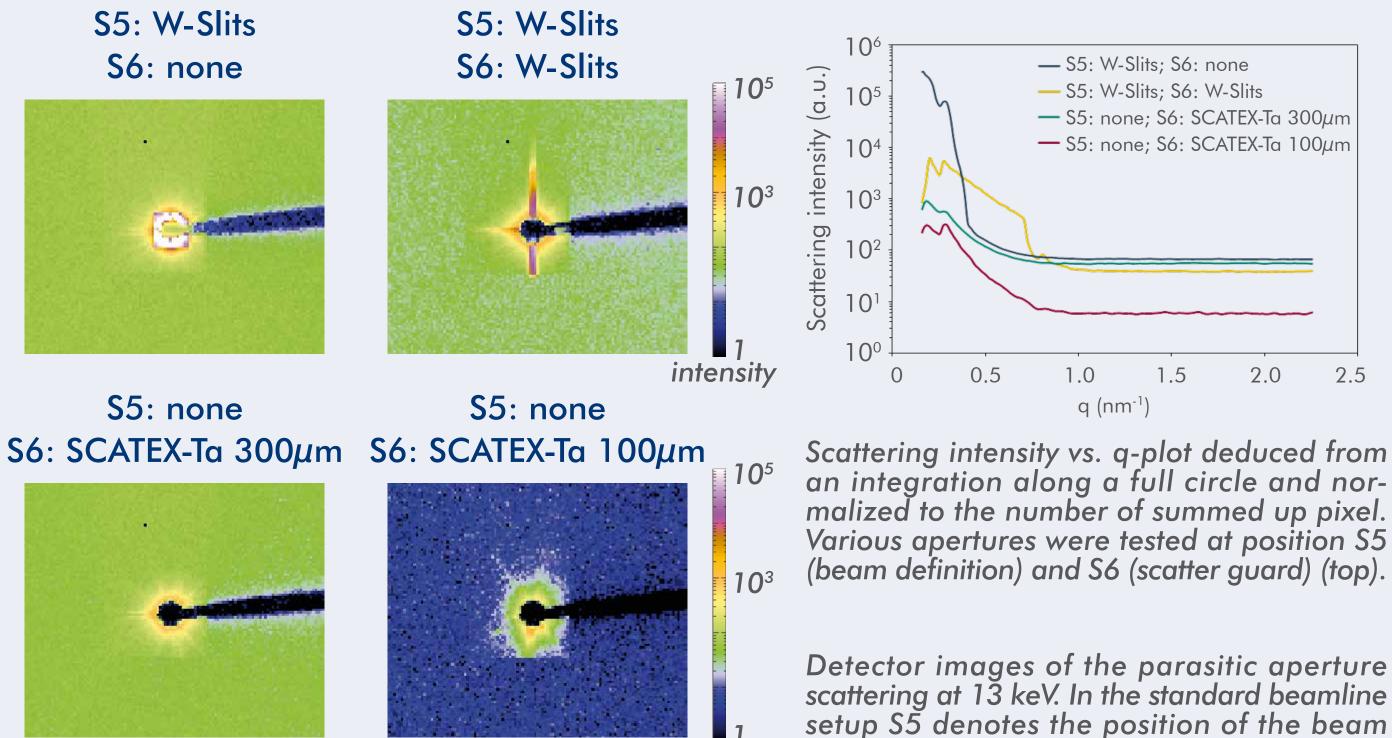
Advantages of a SCATEX 2-Pinhole Setup

- approx. 6 times higher scattering intensity with similar resolution
- higher flux possible due to a larger possible beam defining pinhole
- smaller footprint due to less pinholes

Corresponding scattering intensity vs. q-plot measured with a 3-pinhole high resolution NANOSTAR™ and with a modified 2-pinhole NANOSTARTM equipped with SCATEX pinholes. The resolution of both setups is very similar, but the setup with SCATEX pinholes gives a considerably higher scattering intensity.

Detector images and corresponding count rates around the beam stop for 50% of the primary beam intensity passing the pinhole.

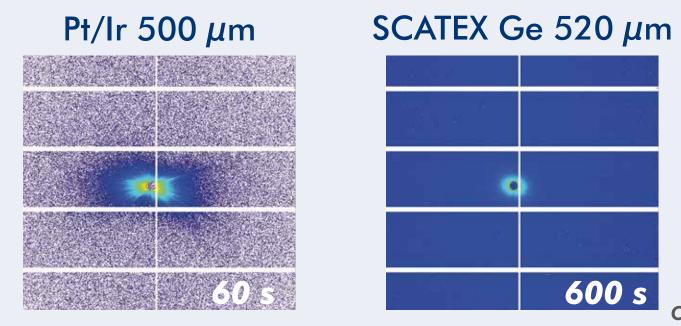
faster data acquisition possible


Acknowledgement: The measurements were performed in collaboration with J.Kreith, Materials Center Leoben, Austria.

SCATEX Pinholes for Synchrotrons

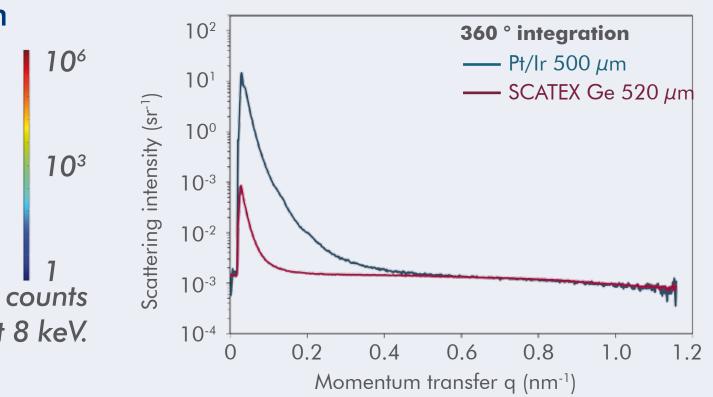
Synchrotrons provide higher photon fluxes, higher resolution and often higher energies compared to home-lab instrumentations. Thus, in order to guarantee the best performance, apertures need to be of higher quality and should be made of a material suited for the dedicated energies. To fulfill these requirements we recommend SCATEX-Ge for energies below 11.1 keV and SCATEX-Ta for energies larger than 11.1 keV.

Comparison of Tungsten Slits and SCATEX-Ta Pinholes


The measurements were performed at 13 keV at the Nanofocus Endstation PO3 beamline at PETRA III with typical photon fluxes of 10^{11} - 10^{12} ph/s.

intensity

Comparison of SCATEX-Ge with other Pinholes and Scatterless Ge Slits


The corresponding measurements were performed at the PTB four-crystal monochromator beamline at BESSY II at 8 keV with a typical photon flux in the range of 4*10⁹-4*10¹⁰ ph/s. The tested apertures were aligned centric into the primary beam.

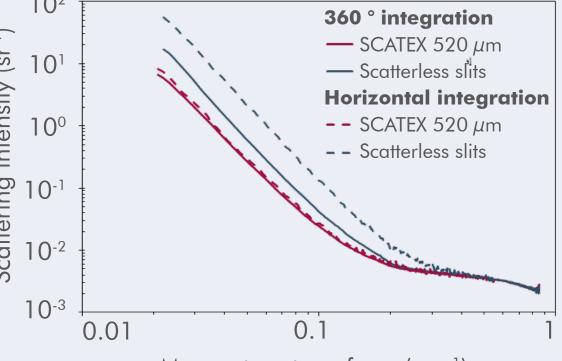
Detector images of the parasitic aperture scattering at 8 keV.

SCATEX-Ge Pinholes

- allow 10 times longer exposure time
- 2 orders of magnitude less parasitic scattering
- much less scattering into the q-space
- scattering pattern is circular, thus showing the high overall structural quality of the pinhole

Scattering intensity deduced from the detector images and corrected for the different measurement times and normalized to the photon flux upstream of the tested aperture.

Detector images of the parasitic aperture scattering at 13 keV. In the standard beamline setup S5 denotes the position of the beam defining aperture and S6 the position of the antiscatter aperture (pictures left).


a single SCATEX-Ta pinhole replaces both beam defining slit S5 and antiscatter slit S6 the beam-defining SCATEX-Ta aperture can be positioned closer to the sample one order of magnitude less parasitic aperture scattering with SCATEX pinholes made of Tantalum compared to the standard setup with Tungsten slits

Scatterless Ge Slits SCATEX Ge 520 μ m 106 101 S sity 10° **10**³ ත 10⁻ to 10-2 600 s 600 s counts

Detector images of the parasitic aperture scattering at 8 keV of scatterless Ge slits and of a SCATEX pinhole made of Ge.

SCATEX-Ge Pinholes

up to 8 times less parasitic aperture scattering guarantee higher data quality and faster data acquisition

Momentum transfer q (nm⁻¹)

Scattering intensity vs. q-plot deduced from the integration in horizontal direction with an opening angle of 5° and from an integration along a full circle. The data is normalized to the photon flux downstream of the test aperture and to the solid angle.

innovative coating technologies